Traffic Tie-up May Lead to ALS, Scientists Say

January 23, 2018 - als

Neuronal gridlock? Impairment of a intracellular smoothness car Kif5A is related to ALS, suggesting that a traffic-tie adult of pivotal load including mitochondria might lead to a illness (Brenner et al., 2018). [Image: Axonal Transport. Courtesy of Hirokawa et al., 2010, Neuron.]

A mitochondrial wreck in engine neurons might minister to during slightest one form of ALS according to a new report from a University of Ulm in Germany. The study, led by Jochen Weishaupt, found that mutations in a gene encoding a microtubule engine protein Kif5A is compared with ALS and segregates with a disease.

The intracellular smoothness vehicle, according to preclinical studies led by University of Tübingen’s Ludger Schöls in Germany, transports mitochondria along axons in engine neurons (Karle et al., 2012).

Other load includes RNA granules that might enclose FUS, hnRNP A/B, hnRNP A1, EWSR1, and SYNCRIP (hnRNP Q) – pivotal RNA-binding proteins also concerned in a illness (see March 2013, January 2017 news; Kanai et al., 2004; Couthouis et al., 2012; Kim et al., 2013; Bakkar et al., 2018).

The news builds on a prior genome-wide organisation (GWAS) analysis, led by University of Massachusetts Medical School’s John Landers in Worcester, in partnership with Project MinE, that identified mutations in a same segment of a gene in people with ALS though this organisation did not strech statistical stress (Kenna et al., 2016).

Kif5A is one of a flourishing series of components of a intracellular ride machine that, when disrupted, formula in ALS suggesting that a trade tie-up in engine neurons might play a pivotal purpose in during slightest some forms of a illness (see October 2017 news; Yang et al., 2001; Münch et al., 2004; Nishimura et al., 2004; Smith et al., 2014; for review, see De Vos et al., 2017).

The investigate is published on Jan 12 in Brain.

A disaster to deliver? Mutations in a C-terminus of Kif5A leads to ALS suggesting that a illness might start due to a inability to bind, and therefore broach load along axons in engine neurons. [Courtesy of Brenner et al., 2018, Brain].

The formula seemed only one month after John Landers announced during a 2017 International Symposium on ALS/MND in Boston, Massachusetts that his team, in partnership with Project MinE, CReATe, GTAC, Answer ALS and a New York Genome Center, reliable that Kif5A variants were compared with a illness (P = 6.4 x 10-10; OR = 1.38).

The commentary supplement to a flourishing series of studies, that advise that a intrusion of axonal ride of pivotal load including mitochondria and RNA granules in engine neurons might minister to engine neuron toxicity in ALS (see March 2012, March 2017 news; Magrané et al., 2014; Gopal et al., 2017).


To learn some-more about a rising purpose of axonal ride in ALS, check out FUS Jams Mutant Axons, Blocking a Deacetylase Might Help.

Featured Paper

Brenner D, Yilmaz R, Müller K, Grehl T, Petri S, Meyer T, Grosskreutz J, Weydt P, Ruf W, Neuwirth C, Weber M, Pinto S, Claeys KG, Schrank B, Jordan B, Knehr A, Günther K, Hübers A, Zeller D; German ALS network MND-NET , Kubisch C, Jablonka S, Sendtner M, Klopstock T, de Carvalho M, Sperfeld A, Borck G, Volk AE, Dorst J, Weis J, Otto M, Schuster J, Del Tredici K, Braak H, Danzer KM, Freischmidt A, Meitinger T, Strom TM, Ludolph AC, Andersen PM, Weishaupt JH. Hot-spot KIF5A mutations means patrimonial ALS. Brain. 2018 Jan 12. [PubMed].


Karle KN, Möckel D, Reid E, Schöls L. Axonal ride necessity in a KIF5A( -/- ) rodent model. Neurogenetics. 2012 May;13(2):169-79. [PubMed].

Gopal PP, Nirschl JJ, Klinman E, Holzbaur EL. Amyotrophic parallel sclerosis-linked mutations boost a flexibility of liquid-like TDP-43 RNP granules in neurons. Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2466-E2475. [PubMed].

Magrané J, Cortez C, Gan WB, Manfredi G. Abnormal mitochondrial ride and morphology are common pathological denominators in SOD1 and TDP43 ALS rodent models. Hum Mol Genet. 2014 Mar 15;23(6):1413-24. [PubMed].

Smith BN, Ticozzi N, Fallini C, Gkazi AS, Topp S, Kenna KP, Scotter EL, Kost J, Keagle P, Miller JW, Calini D, Vance C, Danielson EW, Troakes C, Tiloca C, Al-Sarraj S, Lewis EA, King A, Colombrita C, Pensato V, Castellotti B, de Belleroche J, Baas F, 10 Asbroek AL, Sapp PC, McKenna-Yasek D, McLaughlin RL, Polak M, Asress S, Esteban-Pérez J, Muñoz-Blanco JL, Simpson M; SLAGEN Consortium, outpost Rheenen W, Diekstra FP, Lauria G, Duga S, Corti S, Cereda C, Corrado L, Sorarù G, Morrison KE, Williams KL, Nicholson GA, Blair IP, Dion PA, Leblond CS, Rouleau GA, Hardiman O, Veldink JH, outpost basement Berg LH, Al-Chalabi A, Pall H, Shaw PJ, Turner MR, Talbot K, Taroni F, García-Redondo A, Wu Z, Glass JD, Gellera C, Ratti A, Brown RH Jr, Silani V, Shaw CE, Landers JE. Exome-wide singular various investigate identifies TUBA4A mutations compared with patrimonial ALS. Neuron. 2014 Oct 22;84(2):324-31. [PubMed].

Nishimura AL, Mitne-Neto M, Silva HC, Richieri-Costa A, Middleton S, Cascio D, Kok F, Oliveira JR, Gillingwater T, Webb J, Skehel P, Zatz M.A turn in a vesicle-trafficking protein VAPB causes late-onset spinal robust atrophy and amyotrophic parallel sclerosis. Am J Hum Genet. 2004 Nov;75(5):822-31. [PubMed].

Münch C, Sedlmeier R, Meyer T, Homberg V, Sperfeld AD, Kurt A, Prudlo J, Peraus G, Hanemann CO, Stumm G, Ludolph AC. Point mutations of a p150 subunit of dynactin (DCTN1) gene in ALS. Neurology. 2004 Aug 24;63(4):724-6. [PubMed].

Yang Y, Hentati A, Deng HX, Dabbagh O, Sasaki T, Hirano M, Hung WY, Ouahchi K, Yan J, Azim AC, Cole N, Gascon G, Yagmour A, Ben-Hamida M, Pericak-Vance M, Hentati F, Siddique T. The gene encoding alsin, a protein with 3 guanine-nucleotide sell means domains, is deteriorated in a form of recessive amyotrophic parallel sclerosis. Nat Genet. 2001 Oct;29(2):160-5. [PubMed].

Kanai Y, Dohmae N, Hirokawa N. Kinesin transports RNA: siege and characterization of an RNA-transporting granule. Neuron. 2004 Aug 19;43(4):513-25. [PubMed].

Couthouis J, Hart MP, Erion R, King OD, Diaz Z, Nakaya T, Ibrahim F, Kim HJ, Mojsilovic-Petrovic J, Panossian S, Kim CE, Frackelton EC, Solski JA, Williams KL, Clay-Falcone D, Elman L, McCluskey L, Greene R, Hakonarson H, Kalb RG, Lee VM, Trojanowski JQ, Nicholson GA, Blair IP, Bonini NM, Van Deerlin VM, Mourelatos Z, Shorter J, Gitler AD. Evaluating a purpose of a FUS/TLS-related gene EWSR1 in amyotrophic parallel sclerosis. Hum Mol Genet. 2012 Jul 1;21(13):2899-911. [PubMed].

Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 means multisystem proteinopathy and ALS. Nature. 2013 Mar 28;495(7442):467-73. [PubMed].

Bakkar N, Kovalik T, Lorenzini I, Spangler S, Lacoste A, Sponaugle K, Ferrante P, Argentinis E, Sattler R, Bowser R. Artificial comprehension in neurodegenerative illness research: use of IBM Watson to brand additional RNA-binding proteins altered in amyotrophic parallel sclerosis. Acta Neuropathol. 2018 Feb;135(2):227-247. [PubMed].

Collard JF, Côté F, Julien JP. Defective axonal ride in a transgenic rodent indication of amyotrophic parallel sclerosis. Nature. 1995 May 4;375(6526):61-4. [PubMed].

Further Reading

De Vos KJ, Hafezparast M. Neurobiology of axonal ride defects in engine neuron diseases: Opportunities for translational research? Neurobiol Dis. 2017 Sep;105:283-299. [PubMed].

Hirokawa N, Niwa S, Tanaka Y. Molecular motors in neurons: ride mechanisms and roles in mind function, development, and disease. Neuron. 2010 Nov 18;68(4):610-38. [PubMed].

Share this:

More als ...

› tags: als /